Főoldal » Hasznos információk » Plazmagázok

PLAZMAGÁZOK

Plazmagázok

Plazmagáznak hívjuk az összes gázt, vagy gázkeveréket, amelyeket a plazma előállítására, vagy vágásra alkalmazunk. A plazmavágás két fő fázisa a plazmagyújtási és vágási fázis. Ezért a plazmagázok feloszthatók gyújtásnál és vágásnál használt gázokra, amelyek különböznek a gázok típusának és áramlási mennyiségének szempontjából. A vágógázok mellett a plazmaégő kialakításától függően lehetnek még másodlagos, segédgázok, illetve víz. A plazmagáz döntő szerepet játszik a minőségben és a vágás gazdaságosságban. Különböző anyagok és különböző anyagvastagságok különböző plazmaközeget igényelnek. Ezek a közegek lehetnek gázok, gázkeverékek, vagy akár víz is. Az alkalmazott gáz kiválasztásnál a gáz fizikai és mechanikai tulajdonságait is számításba kell venni, annak érdekében, hogy nagy vágási sebességet és jó minőséget érjünk el. A plazmasugárral szemben támasztott követelmények a nagy energiatartalom, a jó hővezetés és a nagy mozgási energia is, amit a különböző plazmagázok fizikai tulajdonságai határoznak meg.

A kémiai tulajdonságok – redukáló, semleges, oxidáló hatású – szintén nagymértékben befolyásolják a vágási minőséget és az esetleges további utómunkák költségeit. Jelentős hatása van a minőségre annak is, ha plazmagáz kölcsönhatásba lép az olvadt fémmel. A fentiek értelmében különös figyelmet kell fordítani a plazmagáz kiválasztása a vágandó anyag és eljárás függvényében. Inert és aktív gázok és azok keverékei általában alkalmasak plazmagáznak. Plazmagáznak lehet használni argont, hidrogént, nitrogént, oxigént és ezek keverékeit, valamint levegőt. Előnyöket és hátrányokat tekintve egyik fent említett plazmagáz sem nevezhető optimális plazma közegnek. Ezért legtöbb esetben a fenti gázok keverékeit használják. A nem megfelelő gázkeverékek a fogyó alkatrészek fokozottabb kopásához és a plazmaégő idő előtti tönkremeneteléhez vezethet.

Az argon az egyetlen semleges gáz, amely a levegő bontásából állítható elő. Nagy atomsúlya miatt a nagy impulzus sűrűségű plazma sugár elősegíti az olvadt anyag eltávolítását a vágott résből. Alacsony ionizációs energiája miatt, az argon viszonylag egyszerűen ionizálható. Ezért a tiszta argont gyakran alkalmazzák a plazmaív meggyújtásánál. Viszonylag kis hővezetési képessége és entalpiája miatt a tiszta argon nem ideális vágógáznak, mivel relatív csak kis vágási sebességet enged meg és használata nem jó minőségű felületet produkál.

A hidrogént az argonnal összehasonlítva láthatjuk, hogy a hidrogénnek nagyon kicsi az atomsúlya, de jó a hővezető képessége. A kétatomos hidrogén molekula ionizációja és újraegyesülése kezdetben nagy energiatartalmat biztosít az ívnek. A hidrogén önmagában még nem alkalmas plazmaközegként, akárcsak az argon. Azonban ha a hidrogén kedvező fizikai tulajdonságait (nagy energiatartalom és entalpia) ötvözzük az argon kedvező atomsúlyával, akkor egy gyorsan haladó nagy kinetikus energiájú, valamint megfelelő hőtartalommal rendelkező ívet kapunk, amivel az anyag könnyen és jól vágható lesz.

Az argon-hidrogén gázkeveréket gyakran alkalmazzák erősen ötvözött acélok és alumínium vágásához. Akár pár százaléknyi hidrogén hozzáadásával az argonhoz jelentős javulás érhető el minőségében és vágási sebességben. Továbbá a hidrogénredukáló hatása miatt sima, oxidmentes lesz a vágott felület. Ezt a keveréket gyakorlatban 150 mm-es lemezekig használják. A hidrogén aránya 35%, de ez az érték a vágandó anyagvastagság függvénye. A hidrogén mennyiségének 35% fölé növelése a gázban már nem növeli észrevehető mértékben a vágási sebességet. Amennyiben a hidrogén részaránya gázban több mint 40%, akkor a vágási felületen az anyag visszahajlik és megnő a sorjaképződés is.

A nitrogén a fizikai tulajdonságok szempontjából valahol az argon és a hidrogén között van. Atomsúlya messze meghaladja a hidrogénét, de jóval az argon alatt van. A nitrogén hővezető képessége jobb, entalpiája magasabb, mint az argoné, de a hidrogéné alatt van. Nitrogén az ív koncentrációjára gyakorolt hatása alapján hasonlóan viselkedik, mint a hidrogén. Hőtartalma is hasonló a hidrogénéhez. A nitrogén plazmagázként való alkalmazása lehetővé teszi a munkadarab gyors és oxidmentes vágását vékony falvastagság esetén. Hátránya, hogy a vágott él nagyon barázdált lesz. A tökéletesen párhuzamos élek vágása nehezen kivitelezhető. A tiszta nitrogén alkalmazása azonban minőségi problémákat vet fel. A nitrogén abszorpciója a vágott felületen a hegeszthetőség szempontjából – porozitás – kedvezőtlen hatás.

A nitrogén-hidrogén gázkeveréket gyakran alkalmazzák erősen ötvözött acél és alumínium vágásához. Ezzel a gázkeverékkel párhuzamos éleket lehet vágni észrevehetően nagyobb sebességgel, mint tiszta argon esetén. A vágott felületek oxidációja szintén kisebb mértékű, mint ha tiszta nitrogént használtunk volna. Ezek a gázkeverékek 20% hidrogéntartalomig formáló gázként használathatók.

Az argon- hidrogén-nitrogén gázkeveréket erősen ötvözött acél és alumínium vágásához alkalmazzák. Használatával jobb minőség, kevesebb pozíció probléma és sorjaképződés érhető el, mint argonhidrogén gázkeverék alkalmazásával. A legáltalánosabban használt gázkeverékek 50-60% argont, 30-50% nitrogén és hidrogént tartalmaznak. A hidrogén mennyisége a vágandó munkadarab vastagságától függ: vastagabb anyaghoz több hidrogént kell használni.

Ötvözetlen és alacsonyan ötvözött acélok vágásához plazmagázként oxigént használnak. Ha oxigén keveredik, az olvadékhoz az olvadék viszkozitása csökken, folyósabbá válik. Ez a jelenség általánosságban lehetővé teszi, hogy sorjamentes és éles éleket érjünk el. Nagyobb vágási sebesség akkor érhető el, ha nitrogénnel keverjük az oxigént, vagy levegőt használunk. A nitrogén vagy levegő alkalmazása, szemben az oxigénnel nem okoz lényeges nitrogéntartalom növekedést a vágott felületben, így minimalizálva a porozitás megjelenésének lehetőségét hegesztés során. Nagy vágási sebesség következtében a hőhatás övezet szélessége nagyon kicsi lesz és így a vágott fél mechanikai tulajdonságai nem romlanak. A nagy vágási sebesség az oxigén a fémmel szembeni nagy reakcióképességének tulajdonítható.

A levegő alapvetően nitrogénből (78,18%) és oxigénből (20,8%) áll. A levegő nagy energiatartalmú gázkeverék. A levegőt plazmagázként ötvözetlen, vagy gyengén illetve erősen ötvözött acélok és alumínium vágásához használják. A levegőt általában kézi vágáshoz, vagy vékony lemezek vágásához használják. Azonban a levegő jelentősen növeli a vágott felület nitrogéntartalmát. Amennyiben a vágott felületeket utólagosan nem távolítják el hegesztésnél problémákat, porozitást okoz, alumínium vágása esetén pedig a vágott élek elszíneződhetnek.

» Ajánlatkérés «

Vissza a tetejére

Kapcsolódó oldalak

INOX SERVICE HUNGARY KFT.
 
1112 Budapest, Bodajk u. 23.
Tel.: +36-1/248 0056
Fax: +36-1/248 0057
 
E-mail: info@inoxservice.hu
Web: www.inoxservice.hu
Skype: inox.service.hungary
 
Plazmavágó berendezés - rozsdamentes vastaglemez hűtése Gépi fűrészelés - rozsdamentes vastaglemez vágása Plazmavágott tárcsák készletezése Plazmavágás - alakos vágatok Plazmavágás - rozsdamentes karimák vágása Rozsdamentes lemezkészlet Gépi fűrészelés - egyedi laposacélok vágása Előfúrás - plazmavágáshoz Plazmavágó berendezés Rozsdamentes lemezkészlet Rozsdamentes vágatok Rozsdamentes karima egyengetése Gépi fűrészelés Plazmavágó berendezés Gépi fűrészelés - egyedi laposacélok vágása Gépi fűrészelés Plazmavágás - durvalemezek méretre vágása Gépi fűrészelés - hasábok darabolása Rozsdamentes vastaglemezek - raktárkészlet Gépi fűrészelés - méretre vágás Plazmavágás - rozsdamentes vastaglemez vágása Plazmavágó berendezés Pontozógép - hideg beütés előkészítése Gépi fűrészelés - rozsdamentes durvalemez vágása Plazmavágás - rozsdamentes karimák vágása Rozsdamentes vastaglemezből vágott tárcsa Gépi fűrészelés - rozsdamentes hasábok darabolása Rozsdamentes vastaglemez - plazmavágatok Vízsugaras vágás Plazmavágó berendezés - rozsdamentes vastaglemez vágása